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Abstract
A novel approach was proposed, based on the application of the fuzzy logic (FL) method for the fast analysis of the hot 
deformation process of 80MnSi8-6 steel. In the first stage, the curves developed from plastometric tests and the results of 
studies of the microstructure of the deformed samples were used as input data for the analysis. Input and output variables 
were adopted and a set of rules based on cause-and-effect relationships was defined, defining the interactions between the 
variables. A fast FL-controller was designed, and the correctness of its operation was verified by comparison with experi-
mental results and the results of finite element method (FEM) analysis, carried out taking into account the evolution of the 
microstructure. The process of hot compression under isothermal conditions of 80MnSi8-6 steel specimens was simulated 
on the Warmumformsimulator (WUMSI), assuming such parameters and other conditions as were used in real tests. It 
was confirmed that the proposed method, based on the analysis of flow curves and prior austenite grain size using a fuzzy 
controller, gave satisfactory results. Subsequently, a novel FL-controller was developed to analyze the kinetics of dynamic 
recrystallization (DRX), using data obtained from the author’s model of this phenomenon for its construction and calibration. 
The correctness of the controller was confirmed by comparing the results of its DRX volume fraction calculations with the 
distributions of this value determined by the model and the model-based FEM analysis method, respectively. It was shown 
that FL is applicable also when a model of the analyzed phenomenon is available. Unlike model-based calculations, a prop-
erly designed controller allows the indication of deviations from general trends that can be pointed out and interpreted by 
a human expert, but significantly faster. It can also serve as a component of a system analyzing complex processes, such as 
hot multi-stage forging. Fuzzy controller can be used in parallel with modeling or replace models in calculations.
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1  Introduction

Structural steels are currently among the most widely used 
materials in engineering. They are produced through well-
understood and technically mastered processes and are 
characterized by high and stable properties [1]. Within 
this group of materials, bainitic steels are gaining increas-
ing significance. Bainite is a phase aggregate composed of 
ferrite plates with minor phases such as retained austenite 
and carbides [2]. Bainitic microstructures can be generated 
throughout the entire volume of products or in selected areas 
[3], such as the near-surface region. The mechanical prop-
erties of bainitic steels are high and competitive compared 
to many conventional steels [4]. The size of the bainitic 
constituents can be controlled within a range from tens of 
nanometers to hundreds of micrometers [5]. By controlling 
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the microstructural scale, the properties of the products can 
be significantly modified [6], depending on their intended 
use. A typical bainitic ferrite plate has a thickness of about 
0.2–0.5 µm and an average length of about 100 µm [7]. By 
controlling plastic deformation and heat-treatment pro-
cesses, microstructures typical of nanobainitic steels can be 
achieved, consisting of a mixture of very thin bainitic ferrite 
plates separated by carbon-enriched austenite [8]. Steel man-
ufacturers and users of these products have recognized the 
advantages of obtaining this type of microstructure [9]. One 
of the most important advantages of nanobainitic steels is the 
highly favorable combination of strength and ductility, com-
pared to many high-performance steels [10]. Nanostructured 
bainitic steel induced by quasi-static and dynamic deforma-
tion can achieve a mostly higher combination of hardness 
and strength with no brittle cracking at even very high strain 
rates [11]. The presence of nanobainite also results in high 
wear resistance [12], as demonstrated in studies conducted 
by Leiro et al. [13] and Du et al. [14]. The ability to modify 
the properties of nanobainitic steel also opens up possibili-
ties for producing products with special requirements, such 
as protective armor [15]. Due to the high application poten-
tial of nanobainitic steels, they are currently the subject of 
intensive research. It is generally accepted that they must be 
cost-effective to produce, which can be achieved by exclud-
ing expensive elements such as cobalt and nickel from the 
chemical composition. Bainite subunits thinner than 100 nm 
are most commonly obtained by performing isothermal heat 
treatment in the temperature range of 200–400 °C [4]. In 
many studies focused on designing nanobainitic steels, the 
primary goal is to achieve nanobainite at the lowest possible 
temperature [8]. Research conducted by Garcia-Mateo et al. 
[16] has considered the economic benefits achieved using 
inexpensive alloying elements and enabling transformation 
within an industrially acceptable time frame.

The favorable combination of strength, ductility, and 
performance properties of nanobainitic steels makes these 
materials potentially suitable for producing medium- and 
large-sized structural components. These components are 
typically shaped through open-die forging operations, and 
then air-cooled. However, the heat treatment time required 
to achieve a uniform bainitic microstructure in large forgings 
can be measured in days, leading to excessive usage of heat-
ing installations [17] and making the process costly. On the 
other hand, nanobainitic steels can be used for the open-die 
forging of small series of structural components with signifi-
cantly smaller dimensions, such as shafts, rings, and bush-
ings. A limitation of open-die forging technology is the need 
for multiple operations, which requires a long processing 
time. This time depends primarily on the strain value and the 
shape of the component. As a result, inter-stage reheating is 
often necessary, which is costly, energy-intensive, and leads 
to grain growth (GG). This issue is particularly relevant for 

forgings weighing up to several dozen kilograms, which 
quickly lose heat to the environment and tools [18]. There-
fore, when using this hot-forming method for bainitic steels, 
it is crucial to design the successive operations in such a 
way that minimizes the need for inter-stage reheating while 
also achieving a microstructure with the finest possible prior 
austenite grain size, which is most favorable for transforma-
tion into nanobainite in the subsequent step. This approach 
was the focus of the work [18], which demonstrated that 
an integrated modeling method is useful for designing the 
forming processes of the studied bainitic steel when multiple 
consecutive operations are involved.

Due to the large number of operations and the rapid cool-
ing of the material, optimizing the design of the multi-stage 
forging process for small forgings is complex. Additional 
challenges include accounting for the specific character-
istics of a given production line, such as factors affecting 
the rate of heat loss from the material during successive 
forging operations and the necessary pauses between them. 
Therefore, in the implementation of multi-stage hot forging 
technology for many modern materials, including bainitic 
steels, the role of the human expert is crucial. However, the 
limitation in such cases is the relatively long time required 
for analysis and response. One method to address this prob-
lem is the use of a computational tool that enables the analy-
sis of the problem in a way that corresponds to the actions 
of a human expert but completes the task in significantly 
less time. An example of such a tool are expert systems. 
However, their application requires deep knowledge of 
the material being shaped and the process, particularly the 
development of quantitative and qualitative cause-and-effect 
relationships between the hot deformation parameters and 
the material's behavior during the process, as well as the 
evolution of its microstructure [19]. Currently, these rela-
tionships are determined based on data from plastometric 
tests and metallographic studies of deformed samples [20].

In cases where hot forging processes are designed, 
predominantly involving compressive stresses, material 
response to the applied deformation parameters is com-
monly described using hot compression tests under con-
stant temperature and strain rate conditions. These tests are 
conducted within parameter ranges relevant to the mate-
rial under investigation and possibly achievable with the 
available production line. Developing and analyzing flow 
curves allows for the identification of key phenomena asso-
ciated with hot deformation, such as work hardening (WH), 
dynamic recovery (DRV), and dynamic recrystallization 
(DRX). It also facilitates the analysis of interactions among 
these phenomena. These data are combined with observa-
tions and assessments of the microstructure of deformed 
samples. Analysis of this information by an human expert 
enables the identification of parameter combinations that 
result in favorable microstructures and, consequently, the 
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desired product properties. It also helps in selecting param-
eter ranges to avoid, as they may lead to the formation of 
micro or macrostructural defects. Research in this area has 
also been conducted by the authors of this publication, with 
selected results presented in [18, 21]. However, the analysis 
and interpretation of data by experts is time-consuming. This 
issue can be eliminated using solutions based on expert sys-
tems, including controllers that perform calculations using 
fuzzy logic (FL).

In the simplest terms, expert systems are programs 
designed to process and autonomously interpret human 
expert knowledge. They are typically developed to address 
issues for which creating a high-quality mathematical model 
is either impossible or economically unfeasible. A key char-
acteristic of expert systems is the separation of knowledge 
about the problem from the data processing mechanisms. 
This is a fundamental difference compared to typical com-
putational systems, where processing mechanisms are 
encoded in source code. Currently, advanced expert systems 
are increasingly used not only for comprehensive monitor-
ing of equipment status on production lines [22] but also 
for controlling processes performed on these lines [23]. 
Among these solutions with significant application poten-
tial are programs based on FL methods. The method was 
originally introduced and developed as a tool for controlling 
processes where creating a model that precisely describes 
their behavior is difficult or impossible. This approach was 
firstly proposed by Zadeh, who published his work [24] and 
subsequently expanded on it in [25]. The FL introduced by 
this researcher is based on causal relationships and enables 
the effective processing of incomplete or imperfect informa-
tion, with computations reflecting the mechanisms of human 
reasoning. Input variables are defined, which may include, 
for example, measurement results of process parameters, 
and output variables, which define system responses. The 
interactions between variables are described by rules in the 
form of causal dependencies, such as IF X1 is A1 and / or 
X2 is A2…THEN Y1 is B1 and / or …, where Xn represents 
a premise (simple or complex logical expression), and Yn 
represents a conclusion (statement or decision). The fuzzy 
system is responsible for processing information entered into 
the system's knowledge base. Currently, fuzzy controllers are 
used as tools for controlling or monitoring the progression 
of deformation processes in near-real-time conditions, with 
interesting examples found in specialized publications. For 
example, in [26], the problem of selecting the most advan-
tageous parameters for sheet metal stamping was addressed 
using three methods. These methods included an analysis 
based on displacement of points, a fast and approximate 
decision-making method using FL, and an approach combin-
ing the two previous methods. Manabe et al. [27] employed 
this method as a tool to determine the optimal loading path 
in the tube hydroforming process. Raßbach and Lehnert [28] 

utilized FL for analyzing the flow of gradient materials dur-
ing their plastic deformation. Fuzzy models have been suc-
cessfully used to predict material flow during processing 
[29]. Lee and Kopp [30] presented the concept of adapting 
an FL-controller for a hydraulic forging machine. In turn, 
Gronostajski et al. [31] developed an innovative expert sys-
tem for analyzing the key mechanisms responsible for tool 
wear in selected hot forging processes on industrial lines. 
Lin et al. [32] developed a fuzzy expert system to estimate 
dimensional errors in forging products with complex shapes. 
Meanwhile, Wójcik et al. [33] used an algorithm based on 
the FL soft-computing method to assess parameters influenc-
ing the strengthening of S235JR construction steel under 
cyclic loading. The FL has also found applications in design-
ing new deformation processes [34]. Implementing alter-
native production lines for hot deformation methods aims 
to improve process reliability or shorten the technological 
chain. However, operational and strategic decisions, espe-
cially those made at early stages of design, are often based 
on subjective criteria and introduce significant uncertainty 
regarding their outcomes. This often leads to incorrect solu-
tions, resulting in costly modifications to tools or equipment. 
The causes of these issues include data gaps or uncertainty 
about their accuracy once implemented into new technolo-
gies. One method that offers a chance to avoid these prob-
lems is the parameterization of causal relationships and their 
fast analysis using FL-controllers.

It is well known that flow curves, supported by microstruc-
tural analysis, can be used as a basis for developing math-
ematical descriptions of the behavior of the material under 
deformation, in the form of appropriate models. Currently, it 
is commonly assumed that FL is applicable when data are 
incomplete or imprecise. On the other hand, if models describ-
ing the process are available, this method is considered unnec-
essary. However, it should be noted that the nature of changes 
in the actual stress values during hot deformation and the 
microstructure after deformation will depend on the complex 
interaction of a range of factors [29]. These factors include the 
initial microstructure, temperature and its changes during the 
process, the kinetics of work hardening and recrystallization 
phenomena, the strain value, strain rate, loading method, and 
others [35]. This information can be analyzed using fuzzy set 
theory. Such an approach allows for the development of an 
integrated system using FL that operates in near-real-time. The 
basis for analysis in this case would be the results of ongoing 
measurements of process parameters on the production line. 
Consequently, the fuzzy controller’s operation could involve 
not only monitoring process parameters but also their fast anal-
ysis and adjustment. The goal should be to maintain favorable 
process conditions and achieve the desired microstructure of 
the products. This application of FL is the subject of broader 
research conducted by the authors, with one of the challenges 
being the development of a foundation for constructing an 



	 Archives of Civil and Mechanical Engineering           (2025) 25:28    28   Page 4 of 21

FL-controller to control the multi-stage open die hot forging 
process of 80MnSi8-6 steel.

In the authors’ opinion, supported by literature analysis and 
their own research findings, FL can be effectively used as a tool 
for fast estimation of advantageous parameters for hot defor-
mation of various materials, based on data from experiments 
and their detailed analysis. An example of research conducted 
in this field includes the development by the co-authors of this 
publication of an FL-controller designed for the fast selection 
of optimal hot shaping parameters for titanium alloys [36]. The 
demonstrated application potential of such an approach also 
motivated the continuation of research in this area.

2 � Experimental procedure

2.1 � Purpose and scope of research

The aim of the research presented in this work was to develop 
a FL-controller for estimating the optimal parameters for hot 
deformation of 80MnSi8-6 steel, based on results from plas-
tometric tests, analysis of their outcomes, observations of the 
microstructure of deformed samples, and calculations using 
DRX models and finite element method (FEM) numerical 
analysis, including microstructure evolution modeling. In 
the first phase, the research focused on analyzing the results 
of compression tests on 80MnSi8-6 steel, including the flow 
curve profiles and the positioning of characteristic points 
on these curves. It also involved observing the microstruc-
ture of deformed samples, determining the average austen-
ite grain size, preparing a material information database as 
a basis for applying knowledge engineering, developing the 
FL-controller, and verifying the accuracy of the controller’s 
calculations by comparing them with FEM numerical mod-
eling results. The subsequent phase of the research involved 
designing an FL-controller for analyzing DRX kinetics based 
on data obtained from an original model of this phenomenon. 
The accuracy of the controller’s performance was verified by 
comparing the estimated DRX volume fraction with the dis-
tributions of this value determined through both the model 
and FEM analysis.

2.2 � Examined material

The material investigated was 80MnSi8-6 steel, obtained by 
casting process followed by preliminary hot forging of the 
ingot. The chemical composition of the steel is summarized 
in Table 1, and images of its microstructure in the as-delivered 
state are shown in Fig. 1. The microstructure of the starting 

material consists of several phases. Bright areas corresponding 
to ferrite grains can be distinguished, along with areas where 
pearlite grains are present, visible as alternating lamellae of 
ferrite and cementite. Bainite is observed as dark areas with a 
layered structure. Ferrite exhibits highly varied morphology, 
with both large grains, typically of irregular shape, and smaller 
grains with a more regular shape.

2.3 � Methods of investigation

Metallographic investigations of the material were con-
ducted using Leica DM4000M light microscope. Samples 
for microstructural observation were prepared following a 
standard metallographic procedure, which involved grind-
ing, polishing, and then etching with a 5% solution of nitric 
acid in ethyl alcohol. Quantitative analysis of the prior aus-
tenite grain size was performed using Metilo® software, 
which is used for quantitative microstructural analysis. The 
procedure for revealing austenite grains included annealing 
the samples at 350 °C for 72 h, cooling the samples with 
the furnace, and then etching the primary austenite grain 
boundaries. The etching procedure was adjusted individually 
based on temperature and strain rate to achieve satisfactory 
results.

The plastometric tests were conducted using the WUMSI 
(Warmumformsimulator, BÄHR-Thermoanalyse GmbH). 
Cylindrical samples with a diameter of 10 mm and a height 
of 18 mm were used. The faces of the compression speci-
mens were polished. Before testing, the surfaces were coated 
with a layer of a lubricant to reduce the coefficient of fric-
tion. were placed in a heat-resistant steel container, heated 
in a furnace to 1250 °C, and then cooled to the deformation 
temperature. In the next step, the samples were compressed 

Table 1   Chemical composition 
of 80MnSi8-6 steel [wt. %]

Chemical element C Si Mn P S Cr Mo V Fe

Content, % by mass 0.79 1.55 1.9 0.003 0.003 1.3 0.25 0.11 Balance

Fig. 1   Microstructure of 80MnSi8-6 steel in as-delivered state
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at a constant strain rate. The compression tests were per-
formed using strain rates of 0.1, 1.0, 10, and 20 s−1 at tem-
peratures of 900, 1000, 1100, and 1250 °C, respectively, 
and were conducted until an true strain value of ε = 1.2 was 
achieved. After deformation, the samples were removed 
from the container and rapidly water-cooled. Detailed 
information on the procedures for conducting tests using 
the WUMSI simulator can be found in [18].

To accurately determine the true stress values during the 
hot compression tests, corrections accounting for the effects 
of friction and adiabatic heating were applied. In post-pro-
cessing, the raw flow curves were corrected to eliminate the 
value of the stress that is necessary to overcome the friction 
forces. This value depends on the friction coefficient and the 
ratio between the height and diameter of the specimen at a 
given stage of the test. Calculations were performed step 
by step, for all successive stress values. Necessary correc-
tions were incorporated, methods such as the Hensel-Spittel 
method and the Siebel equation were employed [37, 38]. 
Material data, including density, coefficient of friction, and 
thermal conductivity of the tested steel, were used to pre-
cisely determine the true flow stress during the correction 
process.

The FL computations were performed using the Fuzzy 
Logic Toolbox in Matlab. An approach based on Mamdani’s 
criteria was employed. The defuzzification operation was 
carried out using the centroid method.

Numerical simulations of the hot compression test 
under isothermal conditions were conducted using FEM 
with the QForm UK v.10.2.1 software. The material was 
modeled as an isotropic, incompressible continuum. The 
software performed calculations based on a rigid-visco-
plastic model with strengthening, where the flow stress 
is dependent on strain value, strain rate, and tempera-
ture. The range of elastic deformations was not analyzed. 
For the analysis of microstructural evolution, a modified 
Johnson–Mehl–Avrami–Kolmogorov (JMAK) model was 
employed [39]. The calculations accounted for heat gener-
ated during deformation. Friction was described using the 
first law of Levanov. Flow curves, developed from plasto-
metric tests, and thermal characteristics of the material, 
determined for 80MnSi8-6 steel in the hot deformation tem-
perature range, were input into the QForm UK software to 
describe the material’s rheology.

3 � Results

3.1 � Plastometric tests as a foundation for building 
an FL‑controller

Based on the data obtained from the hot compression 
tests on the WUMSI simulator for 80MnSi8-6 steel at the 

specified strain rates and temperatures, true stress–true strain 
curves were developed. The flow curves are presented in 
Fig. 2. The flow curves exhibit the typical sensitivity of bai-
nitic steels to temperature and strain rate. Their behavior 
changes systematically with increasing temperature, which 
is observed across all strain rates used in the tests. At the 
lowest strain rate of 0.1 s−1 (Fig. 2a–d), the material exhib-
its flow at a nearly constant true stress value beyond a true 
strain of approximately 0.4. Equilibrium is reached in this 
range of true strain values regardless of the test temperature. 
For higher strain rates of 1 and 10 s−1, there is a noticeable 
trend of a slight decrease in true stress with increasing true 
strain. At a strain rate of 20 s−1, this trend becomes more 
pronounced, with the inflection point of the curve occurring 
at higher true strain values, around 0.5. A similar course of 
curves developed for the lowest tested temperature and in 
the strain rate range of 1—10 s−1 was observed (Fig. 2a). 
This demonstrates the low sensitivity of the tested steel to 
changes in strain rate under these conditions. This effect is 
particularly evident in values of true strain above 0.6, where 
the mechanisms responsible for the softening effect of the 
material dominate. In the initial stage of deformation, where 
mechanisms related to the generation and accumulation of 
dislocations at grain boundaries dominate, a change in strain 
rate has a slightly greater effect on the course of the curves. 
A more detailed analysis of the flow curves for 80MnSi8-6 
steel is provided by Zyguła et al. [39], which aimed at devel-
oping models for microstructural evolution and the kinetics 
of the DRX phenomenon.

A quantitative and qualitative analysis of the flow curves 
for 80MnSi8-6 steel, aimed at preparing data for the con-
struction of an FL-controller, was carried out according to 
the scheme shown in Fig. 3. Flow stages were developed 
for a representative flow curve of 80MnSi8-6 steel, derived 
from compression testing on the WUMSI simulator at a tem-
perature of 1100 °C and a strain rate of 0.1 s−1 (Fig. 2c). In 
addition, the microstructure of the deformed sample was 
added on the schematic.

The schematic identified the various flow stages, mecha-
nisms responsible for their occurrence, and key points neces-
sary for the quantitative analysis of the phenomena occur-
ring during hot deformation. The flow curve reveals three 
fundamental stages of deformation, which result from the 
activation or deactivation of specific mechanisms [40, 41]. 
In the initial stages of deformation, the flow stress increases 
significantly due to the formation and accumulation of 
structural network defects, mainly dislocations. During this 
stage of compression, WH and DRV are observed. This 
state persists until the critical strain (εc) is reached. Achiev-
ing this critical strain transitions the material into Stage 
II of flow. Since determining the εc from the stress–strain 
curves is challenging, a double-differentiation method [42] 
is commonly employed. Once the accurate value of the εc is 
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established, DRX in the second sub-process can be derived 
from the experimental data of the first sub-process as well 
as the dislocation density theory [43]. As deformation con-
tinues, there is a gradual decrease in the rate of increase in 

true stress with further deformation because, at this stage, 
the DRX mechanism is activated, counteracting the effects 
of WH. Consequently, the true stress reaches a maximum 
value (σp) at what is known as the peak strain (εp). After 

Fig. 2   Influence of thermo-mechanical parameters of hot compression tests using the WUMSI thermo—mechanical simulator on the courses of 
flow curves of 80MnSi8-6 steel developed on their basis. Temperature: a 900 °C, b 1000 °C, c 1100 °C and d 1250 °C

Fig. 3   Flow stages of 
80MnSi8-6 steel during a hot 
compression test on a WUMSI 
simulator at 1100 ºC and a 
strain rate of 0.1 s−1 (Fig. 2c), 
along with the microstructure of 
the deformed sample
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this peak, as deformation progresses, the true stress gradu-
ally decreases. The final observed stage on the stress–strain 
curves is Stage III, known as steady-state flow. During this 
stage, the effects of WH and dynamic softening (DRV and/
or DRX) reach equilibrium. As a result, the material exhib-
its stable flow, characterized by a constant flow stress as 
the true strain progresses. This stability arises because the 
effects of work hardening and deformation softening coun-
terbalance each other. The nature of the curve’s progression 
and the positions of characteristic points provide crucial 
information about the material’s response to external loads, 
depending on the temperature and strain rate applied during 
testing. Consequently, these aspects are essential for ana-
lyzing the kinetics of DRX and for developing models of 
microstructural evolution.

By analyzing the obtained stress–strain curves and apply-
ing the above-described procedure, the values of σp and εp 
were determined, as well as σc and εc. The results of these 
calculations are presented in Fig. 4. This approach provided 
not only a qualitative but also a quantitative description of 
the flow curves. These data were used as the foundational 
information for the next step, which involved the develop-
ment of the FL-controller.

3.2 � Analysis of average prior austenite grain size 
after deformation on WUMSI simulator

Directly after the hot compression tests, the samples were 
rapidly cooled to preserve the prior austenite grain for quan-
titative analysis. The procedure for analyzing grain size 

Fig. 4   The influence of compression test parameters on the WUMSI simulator on significant values of stresses and strains, determined on flow 
curves: a critical strain, b critical stress, c peak strain, d peak stress



	 Archives of Civil and Mechanical Engineering           (2025) 25:28    28   Page 8 of 21

using Metilo® software is illustrated in Fig. 5. The average 
initial grain size of 80MnSi8-6 steel was 526 μm. This value 
was determined for a sample that was heated to 1250 °C, 
held at this temperature for 240 s, and then rapidly cooled 
without deformation.

The results of the calculations for the prior austenite 
grain size of the samples after deformation are presented 
in Fig. 6. For the investigated 80MnSi8-6 steel, within the 
tested deformation parameters, a general trend of either 
a slight increase in primary austenite grain size or main-
taining its size at the same level with increasing test tem-
perature was observed (Fig. 6). An exception to this trend 
was found in samples deformed at a rate of 0.1 s⁻1, where 
increasing the test temperature from 1000 to 1100 °C led 
to a decrease in the average primary austenite grain size. 
In samples deformed directly from the austenitization tem-
perature of 1250 °C, without previous cooling, the largest 
average grain size was observed, regardless of the applied 
strain rate. Increasing the strain rate from 0.1 to 10 s⁻1 led to 

a slight decrease in the prior austenite grain size, while tests 
performed at the highest applied strain rate of 20 s⁻1 resulted 
in an increase in grain size.

3.3 � Development of FL‑controller based 
on plastometric tests and microstructure 
analysis.

The Fuzzy Logic Toolbox module, a component of Matlab, 
was used for fuzzy analysis. The block diagram of the FL-
controller module and how they interact with each other is 
summarized in Fig. 7.

The input and output variables for the FL-controller were 
defined. The inference process was activated for two input 
variables and five output variables. The input variables were 
the parameters from the hot compression test (temperature 
and strain rate), presented in logarithmic notation. Since 
the hot compression process was conducted under strictly 
controlled conditions to achieve a constant strain value of 

Fig. 5   Stages of analysis of prior austenite grain size in Metilo® software

Fig. 6   The influence of com-
pression test parameters on the 
WUMSI simulator on the aver-
age size of the prior austenite 
grain
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1.2, other parameters and factors were assumed to be con-
stant. The output variables chosen were those that allow for 
a quantitative description of the behavior of the studied steel 
during progressive deformation, applied under hot compres-
sion and at constant temperature and strain rate values. This 
behavior results from the progression of WH, DRV, and 
DRX phenomena. According to the schematic in Fig. 3, 
the kinetics of these phenomena can be defined by charac-
teristic points on the flow curves, determined by values σp 
and εp, σc, and εc, respectively. The data was supplemented 
with information on the microstructure of the deformed 
samples, defined by the average prior austenite grain size, 
which varies depending on the compression test parameters. 
The procedure for determining the critical stress values is 
illustrated in Fig. 7 and Table 2. The first step involved defin-
ing the range of values for the input variables, temperature 
and strain rate (Fig. 8a). The characteristics of these val-
ues within the specified range were then represented using 
functions described with linguistic terms. For example, the 
variable “temperature” was described using the following 
terms and notations: “„minimal; MIN”, “medium low; M_
LOW”, „medium big – MED_BIG and “maximal – MAX” 
(Table 2). The behavior of each function was represented as 
accurately as possible to reflect the dynamics of its changes 
within the analyzed range. This procedure was repeated for 
the input variable “strain rate” and for the output variables: 
“critical stress,” “critical strain,” “peak stress,” “peak strain,” 
and “average grain size,” as illustrated in Fig. 8b. For the 
example output variable, “critical stress,” the functions were 
described in linguistic terms (Table 2), using terms such 
“small”, “relatively big – REL. BIG” etc. The remaining 

variables were named and described using functions in a 
similar manner. To enable data analysis and interpretation 
by the system, the relationships between the input and output 
variables were described using a set of fuzzy rules based on 
IF…THEN conditional statements. These rules introduce 
data into the system analogously to how a human expert 
analyzes experimental data and determines relationships 
between them. A simplified example of a rule might be: IF 
“temperature” is “minimum” and “strain rate” is “slow”, 
“THEN” “critical stress” is “relatively big” and so on. In 
this way, a linguistic model was developed, which forms 
the basis for the operation of the FL-controller. The rule 
base was primarily developed based on experimental results, 
but also using expert knowledge. This includes information 
about the effects of various phenomena associated with 
deformation under specific conditions, such as WH or sof-
tening, on the material's flow behavior and the microstruc-
ture state of deformed samples. The defuzzification process 
was carried out using the centroid method.

3.4 � Results of FL analysis for selection of hot 
deformation parameters of 80MnSi8‑6 steel

Figure 8 presents the dependencies calculated using the 
FL-controller between the test parameters of compression 
(temperature and strain rate), and their resulting changes 
in characteristic points on the flow curves (Fig. 8a–c) and 
the prior austenite grain size (Fig. 8d). These dependen-
cies reflect the operation of the designed FL-controller. A 
comparison of these dependencies with the data obtained 
from the analysis of flow curve behavior and quantitative 
assessment of microstructure, as shown in Figs. 4 and 6, 
demonstrated a very good agreement. This indicates that 
the method used in the design and scaling of the controller 
to describe individual variables through functions and rules 
defining interactions between variables is correct. However, 
to verify the accuracy of this statement, precise validation of 
the controller’s performance was required, which was con-
ducted in the subsequent stage.Fig. 7   Block diagram representing a FL-controller system

Table 2   A procedure for converting the values of the input variables; deformation temperature and strain rate and the output variable “critical 
stress” into their description using linguistic descriptions

Data from calculations Linguistic description of the data

WUMSI 
strain rate, 
s−1

WUMSI test temperature, °C Description of 
strain rate, s−1

Description of WUMSI test temperature, °C

900 1000 1100 1250 MIN M_LOW MED_BIG MAX

0.1 152.2 99.5 64.7 35.6 SLOW REL. BIG QUITE MEDIUM REL. MEDIUM SMALL
1.0 218.2 144.9 100.5 56.8 MEDIUM BIG MEDIUM QUITE MEDIUM SMALL
10 231.0 181.0 125.8 80.9 FAST BIG QUITE BIG MEDIUM REL. MEDIUM
20 268.2 196.9 151.3 94.3 V FAST VERY BIG QUITE BIG REL

BIG
QUITE MEDIUM
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3.5 � Verification of the FL‑controller

The accuracy of the FL-controller was verified. The purpose 
of this verification was both to confirm that the results of 
the calculations performed by the controller are correct and 
to demonstrate that the proposed approach based on knowl-
edge engineering is appropriate and effective for the research 
problem analyzed. The verification process was conducted 
in two stages: quantitative and qualitative. In the first stage, 
the results of the controller’s calculations were compared 
directly with the measurements and calculations derived 
from the flow curves and grain size data. In the second stage, 
a qualitative verification of the controller’s performance was 
conducted. For this purpose, numerical simulations using 
FEM were developed and executed for selected variants 
of the compression process under constant temperature 
and strain rate conditions. The parameters and conditions 
for the hot compression process were set to be the same 
as those used during the tests on the WUMSI simulator. 

FEM modeling was conducted considering the evolution 
of microstructure, achieved by incorporating proprietary 
models developed for 80MnSi8-6 steel into the QForm UK 
software. The results obtained using the FL-controller were 
compared with the results of the FEM numerical modeling.

3.5.1 � Comparison of FL‑controller calculation results 
and experimental data

Figure 9 shows fragments of the Fuzzy Logic Toolbox mod-
ule interface from Matlab, displaying the results of example 
calculations conducted using FL. The controller was pro-
vided with temperature and strain rate combinations that 
could be verified by comparing them with data obtained 
from experiments conducted under the same conditions. 
The set values of temperature and strain rate, recorded in 
logarithmic form, are indicated by vertical red lines. Table 3 
presents the results of these calculations along with data 
obtained from the analysis of compression test results under 

Fig. 8   Determined by the FL method, the relationships between temperature and strain rate during hot compression tests and the courses of 
change of the example output variables: a “critical stress”, b “peak stress”, c “critical strain”, and d grain size”
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the same conditions and measurements of the average prior 
austenite grain size. For both methods compared, very simi-
lar results were obtained, confirming the accuracy of the 
estimations made using the designed FL-controller.

3.5.2 � Comparison of FL‑controller calculation and FEM 
results

Numerical modeling that reflect the hot compression tests 
on the WUMSI simulator was conducted. Figure 10 shows 
the results of example simulations. The modeling results 
obtained at the final stage of the tests are presented, taking 
into account changes that occurred from the end of the test 
until the samples were quenched in water to maintain the 
original austenite grain. This period was estimated to be 4 s. 

The average grain size obtained from the FEM modeling 
was compared with measurement results and the calculations 
performed by the FL-controller (Table 3, Fig. 9). Figure 10a 
shows the results of a test conducted at 900 ºC and a strain 
rate of 1 s⁻1. The average grain size dav​ in the center of the 
sample from FEM modeling was 127.5 μm. This value is 
very close to the measurement result dav​ of the sample after 
deformation under these conditions on the simulator, which 
was 129.3 μm, and to the FL-controller calculation result 
of 127 μm. For FEM modeling of the average grain size 
at 1000 ºC and a strain rate of 10 s⁻1 (Fig. 10b), the result 
was 123.7 μm, compared to 124.6 μm from the experiment 
and 127 μm from the FL-controller calculations. The aver-
age grain size from FEM modeling for hot compression 
at 1100 ºC and a strain rate of 1 s⁻1 was 141.2 μm, with 

Fig. 9   Summary of selected results obtained by the FL method. Adopted deformation conditions: a temperature 1000 ºC, strain rate 10 s−1; b 
temperature 1100 ºC, strain rate 1 s−1

Table 3   Summary of 
calculations performed for 
selected variants of deformation 
temperature and strain rate by 
FL-controller in Fuzzy Logic 
Toolbox and experimental 
results

The comparison was made for the test variants shown in Fig. 9

T, ºC ε, s−1 log 𝜀̇ Grain size, μm εc, - σc, MPa εp, - σp, MPa

FL calculations 1000 10 1 127 0.214 187 0.297 179
Experimental results 124.6 ± 7.4 0.205 181 0.310 185
FL calculations 1100 1 0 148 0.216 95.1 0.374 96.9
Experimental results 149.8 ± 16.7 0.224 100.5 0.397 104.7
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corresponding values of 148 μm from measurements and 
149.8 μm from FL-controller calculations. The FEM analy-
sis showed a slight increase in temperature in the center of 
the sample compared to the assumed temperature, as vis-
ible in Fig. 10b and c. This effect also occurs during actual 
compression tests, particularly at higher strain rates, due to 
the conversion of plastic deformation work into heat [44]. In 
practice, the temperature of the sample is monitored during 
the process, and differences between the actual temperature 
and the test temperature are accounted for when develop-
ing flow curves, using appropriate correction procedures. 
In addition, Fig. 10c shows the distribution of true strain 
across the cross-section of the sample at the final stage of 
the test. This distribution depends on temperature and strain 
rate and is closely related to the distribution of the average 
prior austenite grain size.

3.6 � Development of FL‑controller based on DRX 
kinetics model

In the case of monitoring hot deformation processes, one of 
the key issues is understanding the kinetics of DRX. Since 
plastometric tests are conducted until a specific strain value 
is achieved, the analysis and evaluation of the microstructure 
are limited to that strain value. In hot forging processes, the 
strain value depends on factors such as the geometry of the 
initial material, the shape of the final product, and the com-
plexity of the process. Analyzing the DRX behavior over a 
wide range of strain values requires developing a model of 
this phenomenon based on the material’s flow curves. This 
issue was addressed by Zyguła et al. at [39], which resulted 
in the development of a model for the volume fraction of 
DRX for 80MnSi8-6 steel. The model was determined by fit-
ting experimental data from plastometric tests to a modified 
JMAK model. The obtained coefficients were then imple-
mented into the QForm UK software.

where: Xd—volume faction of the DRX, d0—initial grain 
size (526 mm),—𝜀̇strain rate, ε—true strain, εc—critical 
strain, T—temperature, Qd—activation energy, R—univer-
sal gas constant and: βd equals to ln(1-XDRX). Normally, 

(1)

Xd = 1 − exp

⎡⎢⎢⎢⎣
βd ⋅

⎛⎜⎜⎜⎝

ε − εc

Ad ⋅ d
Md
0

⋅ εNd ⋅ ε̇Ld ⋅ exp
�

Qd

RT

�
+ Cd

⎞⎟⎟⎟⎠

kd⎤⎥⎥⎥⎦

the referenced Xd for calculations of the dynamic recrystal-
lization kinetics is taken as 0.5 (i.e., 50% of softening), so 
that βd = 0.693. The Ad, Ld, Md and Nd are experimentally 
determined coefficients, which are responsible for adjusting 
the effects of strain rate, initial grain size and strain value 
on the proportion of recrystallized volume respectively, and 
Cd is a correction coefficient.

All the data necessary to perform the calculation of vol-
ume fraction of DRX (Xd) in the QForm software are sum-
marized in the supplementary material attached to the [39].

3.6.1 � Construction of FL‑controller using the results of Xd 
model calculations

Using the model consistent with Eq. 1, a sufficient amount 
of data was obtained to precisely develop the FL-controller, 
including those values not covered by the experiment. The 
controller was designed using the Matlab Fuzzy Toolbox 
module, analogous to the data analysis based on plastomet-
ric tests and microstructure studies in the post-deformation 
state (Sect. 3.3). Input variables were set as temperature, 
strain value, and strain rate in logarithmic notation. The out-
put variable was the volume fraction of DRX. The changes 
in these values within the given range were represented by 
functions described using linguistic terms. Figure 11 shows 
examples of the plots and descriptions for the input vari-
able “Temperature” and the output variable “DRX Percent”. 
Calculations were performed for strain values ranging from 
0 to 1.2, with increments of 0.1, strain rates from 0.1 to 
20 s⁻1, and additional experimental data values of 0.5 and 
5 s⁻1. The temperature range covered the full extent of the 
tests: from 900 to 1250 ºC, with step changes of 25 ºC. For 
this variable, functions were described using linguistic terms 
such as “heating required,” “quite big,” “medium,” “maxi-
mum,” and others (Fig. 11). Both for temperature and all 
other variables, descriptions were provided using linguistic 
terms that could be easily combined into cause-and-effect 
relationships, such as IF—THEN. Hierarchical relationships 
between values were considered, using terms like “small,” 
“medium,” “average,” “slow,” “fast,” and others. The abil-
ity to use a larger dataset compared to the range of results 
obtained from the experiments allowed for the inclusion of 
more functions describing the variables, thus increasing the 
precision of variable descriptions and enabling the formu-
lation of more accurate rules describing cause-and-effect 
relationships between input and output data.

Figures 12 and 13 present the relationships between the 
parameters of the hot compression test, particularly tem-
perature, true strain, and strain rate presented in logarithmic 
notation, and the corresponding values of the volume frac-
tion of DRX.

The results of calculations performed using the FL 
method and the co-authored model developed by Zyguła 

Fig. 10   Summary of the results of FEM modeling of the hot com-
pression tests. The final state of the simulation, taking into account 
the time required to remove the specimen from the container and cool 
it in water (4 s). Modeled deformation conditions: a temperature 900 
ºC, strain rate 1 s−1, b temperature 1000 ºC, strain rate 10 s−1, c tem-
perature 1100 ºC, strain rate 1–1

◂
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et al. [39] are compared. The relationships in Fig. 12a, c, 
e, and 13a, c reflect the operation of the designed fuzzy 
controller. The comparison between these relationships 
and the data obtained from calculations using the model 
(Figs. 12b, d, e, and 13b, d) show very good agreement. 
This confirms that the method of describing individual 
variables through functions, and the rules of interaction 
between variables introduced into the Fuzzy Logic Toolbox 
during the controller’s design, were correctly designed and 
calibrated.

3.7 � Comparison of volume faction of DRX 
calculations performed with FL‑controller 
and FEM

Numerical modeling of the volume fraction of DRX dur-
ing hot compression tests was conducted. The following 
boundary conditions were assumed during the FEM simu-
lation: the friction coefficient based on Levanov’s law was 
0.4, which corresponds to the graphite lubricant used dur-
ing the hot compression tests, the implemented material 
density varied from 7820 to 7730 kg/m3 in the tempera-
ture range of 40–1200 °C, the implemented thermal con-
ductivity value was from 19.1869 to 26.7594 W/m·K in the 
temperature range of 600–1200 °C, and the specific heat 
was from 470 to 667 J/kg·K in the temperature range of 
40–1200 °C. Figure 14 shows the results of FEM simulations 
carried out at a temperature of 950 ºC, which is critical for 
the occurrence of the DRX phenomenon. The calculations 
of Xd distributions in the QForm UK software were per-
formed using Eq. 1, which is an integral part of the module 

used for microstructure evolution analysis. The calculations 
conducted with both the Xd model and the FL-controller 
(Figs. 12 and 13) confirmed that for a constant strain value 
of 1.2, a temperature of no less than 950 ºC is required for 
DRX to occur throughout the entire volume. Therefore, the 
calculations were performed for compression tests at this 
temperature, with strain rates ranging from 0.1 to 10 s⁻1. 
Figure 14 shows the modeling results obtained at the final 
stage of the tests. The calculations took into account the time 
that elapsed from the end of the test until the samples were 
immersed in water to maintain the primary austenite grain. 
The FEM modeling results of the volume fraction of DRX 
distributions were compared with the results of calculations 
performed using the FL method. To this end, calculations 
using the FL-controller were also carried out for the mod-
eled test variants, and their results are included in Fig. 14 
(highlighted in green).

The value of Xd in the central region of the sample 
obtained through FEM modeling of the compression test at 
950 ºC and a strain rate of 0.1 s⁻1 was 95.79%. This value 
is very close to the result calculated by the FL-controller, 
which estimated the Xd value under these conditions to be 
97.8% (Fig. 14a). Increasing the strain rate to 1 s⁻1 (Fig. 14b) 
resulted in Xd values of 99.32% determined by FEM and 
98.0% based on FL calculations. Applying a strain rate of 
10 s⁻1 (Fig. 14c) led to Xd values of 99.4% from FEM and 
97.9% from the FL method. However, regardless of the value 
of DRX (Xd) read at a representative point of the specimen, 
it should be noted that for a strain rate of 10 s−1, the area on 
the cross-section where almost complete recrystallization 
occurs (Fig.  14c) is smaller than that determined by 

Fig. 11   Summary of courses 
and descriptions of: a sample 
input variable and b output 
variable
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FEM for a specimen compressed at a strain rate of 1 s−1 
(Fig. 14b), which is in tendency with the results obtained 
by the FL method. A comparison of the results obtained 
by both methods revealed differences of approximately 2%, 
regardless of the strain rate used. This comparison confirms 
that the FL-controller’s estimations are highly consistent 
with FEM results, demonstrating the effectiveness and 
accuracy of the FL-based approach for predicting DRX 
behavior in various strain rate conditions.

4 � Discussion

When designing hot forming processes, both qualitative 
and quantitative analysis of flow curves is essential for 
identifying fundamental phenomena associated with hot 
deformation, such as WH, DRV, and DRX. Another crucial 
part of information is the evolution of microstructure 
during deformation, particularly the average grain size 
of the primary austenite. Understanding these data and 

their interactions formed the basis for developing the 
FL-controller, which was built on the results of experimental 
research. The primary input variables for the controller were 
the basic parameters from the WUMSI simulator tests, such 
as temperature and strain rate in logarithmic notation. Since 
the hot compression tests were conducted under controlled 
conditions, other parameters and factors were assumed to 
be constant. The output variables chosen were those that 
allow a quantitative description the behavior of investigated 
steel during deformation under constant parameters. This 
behavior results from the progression of WH, DRV, and 
DRX phenomena, whose kinetics were analyzed through 
characteristic points on the flow curves, specifically σp, 
εp, σc, and εc. The final variable was the average grain size 
of the prior austenite, determined based on experimental 
studies. The procedure for converting the test parameters 
and their effects into variables described by linguistic terms, 
as detailed in subSect. 3.3, was carried out in a manner 
that enabled them to be analyzed by the FL-controller 
after defining an appropriate number of rules governing 

Fig. 12   Relationships of deformation parameters during hot compression tests and courses of change of volume faction of the DRX. Results of 
calculations; a-c by fuzzy logic method, and d by Xd model. True strain: a 0.8, b 1.0, and c,d 1.2
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Fig. 13   Relationships of deformation parameters during hot com-
pression tests and courses of change of volume faction of the DRX. 
Results of calculations; a-c by FL method, d-f by model. Calculations 

for log(𝜀̇ ): a,b 0.1, c,d 10. Results of calculations; a,c by FL method 
and b,d by Xd model

Fig. 14   Distributions of volume faction of DRX (Xd) on the cross-section of the deformed specimen obtained as a result of FEM modeling of 
hot compression tests and as a result of calculations obtained using FL-controller. Test temperature 950 ºC, strain rate; a 0.1 s−1, b 1 s−1, c 10 s−1
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the process. When building an FL-controller, variables 
and functions can be described in any way. However, the 
closer the description of variables reflects how the human 
brain operates, the easier it becomes to formulate rules 
that accurately define the influence of interactions between 
the input variables on the output variables. The output 
data for analysis were derived from hot compression tests, 
particularly the flow curves and their characteristic points, 
as well as data on the microstructural state of deformed 
samples, such as the average prior austenite grain size. 
The analysis of these data is based on expert knowledge, 
where the expert identifies and interprets cause-and-effect 
relationships, recording them as IF–THEN rules. These rules 
define the operational strategy of the FL-controller.

Analyzing the relationships between temperature and 
strain rate versus the dimensions of the prior austenite grain 
size, as presented in Fig. 6, it can be concluded that the 
average grain size is influenced by specific combinations of 
these parameters. However, no clear trends in the impact of 
these parameters are observed across their entire range. The 
differences in grain size within the selected temperature and 
strain rate range are minimal, falling within a relatively nar-
row interval from 125 to 169 µm. The average grain size of 
80MnSi8-6 steel, after being heated to 1250 ºC, held at that 
temperature for 240 s (which was taken as the austenitization 
time in the WUMSI simulator test), and then cooled without 
deformation, was 526 µm. Comparing this value with the 
results of calculations for compressed samples leads to the 
conclusion that the hot deformation process of 80MnSi8-6 
steel within the adopted thermomechanical parameters 
results in a significant reduction in the average austenite 
grain size. However, variations in the test parameters have 
a much smaller impact. This is an important observation, 
as it suggests the possibility of achieving a uniform grain 
size distribution during hot forming in industrial conditions, 
where the environment is non-isothermal and strain rates 
vary within the volume of the forging. Of course, this con-
clusion requires further verification.

When analyzing the relationships presented in Fig. 8 
between temperature and strain rate during hot compression 
tests and the variations in output variables such as "critical 
stress," "peak stress," "critical strain," and "grain size," it 
is important to consider that the information input into the 
FL-controller, which determines its functionality, is not 
inherently part of its software. These inputs are derived from 
the selected variables, the way they are described through 
functions, and the interactions between these variables, as 
defined based on experimental results and their analysis. 
The program serves as a tool that formalizes these data 
and interactions into a form that can be processed by a 
system based on FL. Consequently, when these data are 
appropriately inputted, the calculation results produced 
by the controller can accurately reflect the experimental 

findings and the cause-and-effect relationships identified 
from them. Therefore, these results should be viewed as 
equivalent to a detailed data analysis performed by a human 
expert, but accomplished in a significantly shorter time. The 
result of this is the sensitivity to deviations in the results 
from regular value changes, as seen in Fig. 8, which are often 
"flattened" by models through averaging. This functionality 
of the FL-controller and its associated sensitivity allows for 
the consideration of deviations from trends in the response 
of a specific material to deformation under precisely defined 
conditions. Thus, the FL-based controller can identify 
effects that a human expert could detect. This distinction, 
in comparison to model-based programs, can often be an 
advantage of FL-controllers. Conversely, if necessary, an 
appropriate description of variables and the selection of 
rules can eliminate irregularities, thereby reducing the 
controller's sensitivity and basing its calculations on general 
trends.

To verify the functionality of the FL-controller, which was 
developed directly from experimental results, a comparison 
was made between the average prior austenite grain size in 
80MnSi8-6 steel, determined using three different methods. 
Calculations were performed using the FL-controller in the 
Fuzzy Logic Toolbox, quantitative analysis on polished and 
etch cross-sections in the Metilo® software (Fig. 9, Table 3), 
and numerical simulation using the FEM method in QForm 
UK software, which accounted for microstructure evolution 
(Fig.  10). The results obtained were closely aligned, 
confirming that the FL-controller was properly designed 
and can be used for fast and accurate calculations of the 
average primary austenite grain size. It was also noted that 
in some parameter combinations, the FL-controller more 
accurately reflected the results obtained from measurements 
compared to the results from FEM numerical modeling. 
This conclusion is fully consistent with expectations, as 
the FL-controller was developed directly using data from 
compression tests and measurements of grain size after 
deformation. In contrast, models used for determining 
key values during plastic deformation are generally 
developed using widely accepted mathematical equations. 
The construction of such models involves analyzing data 
and fitting appropriate coefficients to the equations. These 
models are inherently designed to mathematically describe 
trends in the changes of the measured quantity and, as such, 
do not account for deviations from trends in individual 
measurements. Such deviations from standard relationships 
can be identified both by a human expert and by a well-
developed FL system because the decision to include or 
exclude them in the calculations is within the competence 
of the person designing the controller. This approach offers 
an alternative to traditional models, as it can detect specific 
effects in the analyzed process or phenomenon that may 
indicate disturbances in typical behavior, which conventional 
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models do not account for. If any deviation from the trend 
is classified as significant by the expert, it can be included 
in the calculations using the FL method, as the decision is 
up to the person designing or calibrating the FL-controller.

It is important to remember that the FL-controller oper-
ates on linguistic knowledge and performs operations on 
fuzzy sets. A key feature of this system is the separation 
of knowledge about the problem from the data processing 
mechanisms, which distinguishes it from other computa-
tional methods, such as those requiring the development 
and implementation of models. Numerical data are embed-
ded within the ranges of variable values and the values of 
individual functions. However, the calculations are based 
on operations on fuzzy sets, in accordance with the rules 
introduced into the system. Therefore, only a precise selec-
tion of functions that describe the variables and the content 
of the rules will lead to results consistent with experimental 
outcomes, and this must be thoroughly verified. This operat-
ing mechanism is advantageous because a properly devel-
oped fuzzy controller is a flexible tool that can be relatively 
easily modified as needed. Adjustments to the controller, 
for example, in response to changes in process parameters 
or even the type of material, can be achieved by modifying 
the range of variables, altering the number and shape of 
functions describing individual variables, and by modifying, 
adding, or deactivating rules.

The developed, calibrated, and verified FL-controller, 
based on experimental data, allows for the fast estimation 
of the response of 80MnSi8-6 steel to changes in tempera-
ture and strain rate combinations within the accepted range. 
This enables the selection of optimal process parameters or 
the rejection of unfavorable variants. Input data for the con-
troller can be provided not only manually but also through 
automatic real-time measurement of process parameters. In 
the latter case, the controller's response speed significantly 
increases, which is a major advantage of the method. Con-
sequently, the controller can be used in industrial practice 
as a tool for the fast assessment of hot forging processes and 
the selection of advantageous process parameters. Real-time 
input of information on strain rate, which results from the 
dimensions of the charge and the speed of the machine's 
working parts, as well as the temperature of the charge, 
allows for the prediction of effects such as WH or soften-
ing, and estimation of the forces necessary for the process. 
Automation of the forging process implemented in a multi-
stage system can provide a number of advantages, such as 
dimensional and shape precision, microstructure control, 
and stability and repeatability of the manufacturing [45]. 
Another advantage of the FL-controller is that the proposed 
solution does not require knowledge of mathematical mod-
els describing the process. At the same time, an approach 
based on human-like reasoning allows the detection of unu-
sual effects that standard models may overlook. As noted 

by J.A. Stendal et al. [46], the deformation behaviour of 
alloys during hot deformation depends on a wide range of 
interrelated phenomena, such as WH, DRV, DRX or meta-
dynamic recrystallisation (MRX) and heat generation. 
These phenomena can occur simultaneously and influence 
each other. It should also be considered that it is not only in 
hot forming processes that such phenomena occur but that 
rebuilding of the defective microstructure as a result of DRV 
can also occur in cold forming processes with large and very 
large deformation. The behaviour varies depending on the 
process temperature, the strain rate applied and the strain 
rate [47]. Therefore, a high-quality FL-controller based on 
the analysis of flow curves and microstructure can involve a 
large amount of information. In addition to rules describing 
obvious relationships (e.g., IF “temperature” is “very high” 
and “strain rate” is “very low” THEN “flow stress” is low), 
it is possible to incorporate into the analysis and reasoning 
those relationships that have a subtle nature and indicate, 
for example, the occurrence of recrystallization or process 
stabilization. Often, these rules describe trends typical for 
a specific alloy composition or for the method of preparing 
the charge for plastic deformation. According to the authors, 
this is one of the reasons why the proposed method is highly 
suitable for analyzing the behavior of materials during their 
hot deformation, including in the open die forging processes 
of 80MnSi8-6 steel.

In the subsequent stage, an innovative FL-controller 
was developed to analyze the kinetics of DRX occurring 
during hot deformation of 80MnSi8-6 steel, using data 
obtained from an original model of this phenomenon for 
its construction and calibration. It is commonly accepted 
that FL is applied in solutions where model development 
is impossible or too complex. The initial part of the work 
followed this model-free approach in constructing the 
FL-controller. However, in the next phase of the research, 
the authors applied a different approach, demonstrating 
the utility of FL methods even when a model is available, 
and highlighting the potential benefits of such a solution. 
Using an original model developed for the mathematical 
description of recrystallization kinetics, an adequate amount 
of data were prepared, describing the relationships between 
deformation parameters and the volume fraction of DRX. 
This dataset also included parameter combinations that were 
not covered by the experiments during hot compression 
tests. These data were used to develop and calibrate the 
FL-controller. Calibration involved adjusting the description 
of variables and modifying, adding, or deactivating rules 
describing interactions between variables. This procedure 
was continued until satisfactory agreement was achieved 
between the calculations performed by the FL-controller 
and those using the model. The results are graphically 
presented in Figs. 12c, d and 13. To verify the correctness 
of the FL-controller's operation, numerical modeling of 
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the volume fraction of DRX for hot compression tests was 
carried out for an example temperature of 950 ºC and strain 
rates ranging from 0.1 to 10 s−1. Comparison of the volume 
fraction of DRX distributions across the cross-section of 
the deformed sample obtained from FEM modeling of 
hot compression tests and the results calculated using the 
FL-controller (Fig. 14) demonstrated consistency between 
the results obtained by these methods. At the temperature 
of 950 ºC used for comparison, the differences in values 
were around 2%, regardless of the applied strain rate. This 
confirmed that the method of describing individual variables 
through functions and interaction rules defined in the form 
of rules was correctly designed. It should also be noted that 
using a strain value of 1.2 during the test leads to a non-
uniform distribution of strain values across the cross-section 
of the cylindrical sample, due to the friction effect at the 
metal–tool interface, which is a known rule. This effect is 
illustrated in Fig. 10a. Consequently, the strain value in the 
central zone of the sample, where microstructure studies and 
grain size analysis are typically performed, differs from the 
average value. This effect influences the comparison results. 
Another factor affecting the FL-controller's performance is 
that operations on fuzzy sets require initial fuzzification of 
values at the beginning of the computational procedure and 
subsequent defuzzification to an averaged value at the final 
stage of calculations. Therefore, a 2% discrepancy between 
the FL-controller's estimates and the model calculations can 
be considered very good. This result strongly supports the 
assumption that the developed controller will accurately 
analyze microstructure changes caused by DRX under the 
hot deformation parameters that will occur on the production 
line. As a result, the FL-controller will function in place 
of the model, using real-time process parameter readings 
as input data. The argument for using an approach based 
on model-derived data for constructing the FL-controller 
primarily lies in the potential applications of such a 
solution. The authors have assumed that DRX analysis 
results obtained through the model can be directly used not 
only to assess the phenomenon’s behavior under controlled 
conditions, such as isothermal processes or those conducted 
at relatively high strain rates with minimal temperature drop. 
Their application could be significantly broader, as they 
may form a component in constructing FL-controllers for 
monitoring long-term processes, such as multi-stage free 
forging. In such processes, over time and with the decrease 
in the temperature of the material being shaped, phenomena 
like DRX, MRX, static recrystallization (SRX), and GG 
occur. The state of the microstructure at a given stage of the 
process results from the coexistence of these phenomena. 
The kinetics of these phenomena must be correlated with 
parameters such as temperature, time, strain rate, strain 
value, and the method of applying the strain. Due to the 
large number of variables involved, multi-stage processes are 

very challenging to control, and their modeling is complex. 
Possible solutions to this problem include FEM method that 
considers the complete evolution of the microstructure, the 
use of artificial intelligence, or methods based on knowledge 
engineering, including FL methods. The presently used 
computing packages based on FEM make it possible to 
determine many physical quantities which are difficult or 
impossible to experimentally [48]. This approach has been 
used, among others, by Hawryluk et al. [49]. However, 
FEM is time-consuming and, for this reason, allows for 
complex technological design, but is not suited for fast 
process control and real-time modifications. On the other 
hand, training neural networks requires a relatively large 
amount of data. The advantages of FL in this context are its 
flexibility, the smaller amount of data required to design the 
controller, and, if needed, the ability to respond to deviations 
from general trends that can be identified and interpreted 
by a human expert. Therefore, the designed FL-controller 
can be used in industrial practice, including for controlling 
multi-stage hot free forging processes of 80MnSi8-6 steel. 
An example of a complex hot forming of a product from 
80MnSi8-6 steel, which, according to the authors, can be 
controlled using FL, is the technology of multi-stage forging 
presented in the work [18]. The process developed in this 
work consists of a series of operations occurring under 
conditions of changing temperature and deformation degree 
in the volume of the workpiece. It also requires the use of 
several sets of tools and the use of inter reheating operation. 
The designed FL-controller can be used to control those 
process steps during which the DRX mechanism is activated.

5 � Conclusions

Research on the application of FL as a method for analyz-
ing the hot deformation processes of 80MnSi8-6 steel, con-
ducted using data obtained from flow curves, microstructure 
analysis, DRX phenomenon modeling and numerical analy-
sis combined with microstructure evolution modeling, has 
led to the following conclusions:

1.	 A well-designed FL-controller allows for fast assess-
ment of the response of hot deformed material to spe-
cific combinations of temperature and strain rate. It also 
enables predicting the impact of deformation parameters 
on the work hardening and softening behavior, as well 
as the microstructure, particularly the average prior aus-
tenite grain size.

2.	 Data obtained from experiments, such as the analysis 
of flow curves developed from plastometric tests or the 
assessment of the microstructure after deformation, can 
be used for developing and calibrating the FL-controller.
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3.	 The development of an FL-controller based on DRX 
phenomenon modeling resulted in a precise tool that can 
be used for controlling short-term processes or those 
conducted under isothermal conditions. It can also be 
integrated into a complex FL-controller for managing 
stages of long-term processes where DRX occurs.

4.	 The proposed solutions are useful in industrial settings 
both when it is not possible to use models describ-
ing microstructure changes during hot deformation of 
80MnSi8-6 steel and when the speed of the control sys-
tem’s response is a priority.

5.	 The FL-controller’s response speed can be enhanced by 
automating real-time measurement of process parame-
ters and directly inputting the results into the FL system. 
This method allows for obtaining expert analysis results, 
based on causal relationships and beyond typical compu-
tational procedures, in a significantly shorter time than 
a human expert. These results can then be automatically 
entered into the process control system.
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